Asymptotic Optimality of Rapidly Exploring Random Tree
نویسندگان
چکیده
In this paper we investigate the asymptotic optimality property of a randomized sampling based motion planner, namely RRT. We prove that a RRT planner is not an asymptotically optimal motion planner. Our result, while being consistent with similar results which exist in the literature, however, brings out an important characteristics of a RRT planner. We show that the degree distribution of the tree vertices follows a power law in an asymptotic sense. A simulation result is presented to support the theoretical claim. Based on these results we also try to establish a simple necessary condition for sampling based motion planners to be asymptotically optimal.
منابع مشابه
Robotic Path Planning using Rapidly exploring Random Trees
Rapidly exploring Random Tree (RRT) path planning methods provide feasible paths between a start and goal point in configuration spaces containing obstacles, sacrificing optimality (eg. Shortest path) for speed. The raw resultant paths are generally jagged and the cost of extending the tree can increase steeply as the number of existing branches grow. This paper provides details of a speed-up m...
متن کاملof Advanced Robotic Systems RRT * - SMART : A Rapid Convergence Implementation of RRT * Regular Paper
Many sampling based algorithms have been introduced recently. Among them Rapidly Exploring Random Tree (RRT) is one of the quickest and the most efficient obstacle free path finding algorithm. Although it ensures probabilistic completeness, it cannot guarantee finding the most optimal path. Rapidly Exploring Random Tree Star (RRT*), a recently proposed extension of RRT, claims to achieve conver...
متن کاملDeterministic sampling-based motion planning: Optimality, complexity, and performance
Probabilistic sampling-based algorithms, such as the probabilistic roadmap (PRM) and the rapidly-exploring random tree (RRT) algorithms, represent one of the most successful approaches to robotic motion planning, due to their strong theoretical properties (in terms of probabilistic completeness or even asymptotic optimality) and remarkable practical performance. Such algorithms are probabilisti...
متن کاملIncremental Sampling-based Algorithms for Optimal Motion Planning
During the last decade, incremental sampling-based motion planning algorithms, such as the Rapidly-exploring Random Trees (RRTs), have been shown to work well in practice and to possess theoretical guarantees such as probabilistic completeness. However, no theoretical bounds on the quality of the solution obtained by these algorithms, e.g., in terms of a given cost function, have been establish...
متن کاملIntelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments
The sampling based motion planning algorithm known as Rapidly-exploring Random Trees (RRT) has gained the attention of many researchers due to their computational efficiency and effectiveness. Recently, a variant of RRT called RRT* has been proposed that ensures asymptotic optimality. Subsequently its bidirectional version has also been introduced in the literature known as Bidirectional-RRT* (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1707.03976 شماره
صفحات -
تاریخ انتشار 2017